Total Synthesis of (\pm)-Methyl Atis-16-en-19-oate via Homoallyl-Homoallyl Radical Rearrangement

Masahiro Toyota,* Toshihiro Wada, Keiichiro Fukumoto, and Masataka Ihara*
Contribution from the Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980-8578, Japan

Received November 14, 1997

Abstract

Total synthesis of (\pm)-methyl atis-16-en-19-oate (5c), a tetracyclic diterpenoid possessing a bicyclo[2.2.2]octane ring system, was accomplished. Intramolecular Diels-Alder reaction of tetraene $\mathbf{1 4}$ was employed in a construction of kaurene skeleton 13. The pivotal step involved a homoallyl-homoallyl radical rearrangement process of (\pm)-methyl 12-hydroxykaur-16-en-19-oate monothioimidazolide 12, which led to $\mathbf{5 c}$ in good yield. Interestingly, treatment of methyl 12-oxo-kaur-16-en-19-oate $\mathbf{3 0}$ with hydrazine monohydrate in the presence of KOH in bis(ethylene glycol) at $200^{\circ} \mathrm{C}$ resulted in cyclopropanation to furnish, directly, trachyloban-19-oic acid (4b), together with kaur-16-en-19-oic acid (6b).

Introduction

Atisirenoic acid (5b) was first isolated from Helichrysum chionosphaerum as the corresponding methyl ester 5c by Bohlmann in 1980; ${ }^{1}$ however, partial synthesis of 5c from isosteviol was reported by Coates as early as 1969. ${ }^{2}$ Although some kaurene- and trachylobane-type diterpenoids display a wide range of interesting biological activities, including antimicrobial, ${ }^{3}$ antitumor, ${ }^{4}$ antifeedant, ${ }^{5}$ gibberellin-like, ${ }^{6}$ and antiHIV (neotripterifordin 8) ${ }^{7}$ properties, relatively little is known about the substantial biological activities of $\mathbf{5 c}$ and its relatives $(\mathbf{5 a}, \mathbf{b}) .{ }^{8}$ However, the unique bicyclo[2.2.2] octane subunit of $\mathbf{5}$, constituting its CD ring system, has provided considerable impetus for the development of new synthetic strategies in the elaboration of the atisirene family. ${ }^{9}$

According to the hypothesis of diterpene biogenesis, originally proposed by Wenkert in 1955, ${ }^{10}$ diterpenes belonging to hibaene (7), kaurene (6a), trachylobane (4a), and atisirene (5a) families all might arise from (-)-copalyl pyrophosphate (1) via nonclassical carbocations such as $\mathbf{2}$ and its hydrogen shift (C 12 to C 16)

[^0]isomer 3 as common intermediates (Scheme 1). ${ }^{11}$ Based on this scheme, interconversions and rearrangements of the bicyclooctane subunit of these diterpenes have been extensively studied. ${ }^{12}$ In most cases, however, reactions proceed via Wagner-Meerwein rearrangements of carbocations, analogous to $2 / 3$, which is generated under acid-catalyzed conditions. Therefore, mixtures of products are frequently obtained.

To achieve such a transformation under mild conditions with satisfactory selectivity, we designed cyclopropylcarbinyl radical 9 as an alternative to $2 / 3$ because it can rearrange to homoallyl radicals 10 and 11, and furthermore, the introduction of hydrogen at C17, if possible, affords 4a. ${ }^{13}$ Rearrangement of a cyclopropylcarbinyl radical via 3-exo fragmentation ${ }^{14}$ usually results in the predominant formation of a thermodynamically more stable homoallyl radical if the concentration of the hydrogen source is sufficiently low. ${ }^{15}$ Thus, we expected that homoallyl radical 10, which possesses a relatively strained fivemembered ring moiety, would undergo homoallyl-homoallyl radical rearrangement via 9 to produce 11 (Scheme 2).

Synthetic Plan

Our synthetic strategy for $\mathbf{5 c}$ is outlined in Scheme 3 in which the $\mathrm{Pd}(\mathrm{II})$-promoted cycloalkenylation reaction ${ }^{16}$ of silyl enol ether 16 and the intramolecular Diels-Alder reaction of $\mathbf{1 4}$ were employed for the construction of the kaurene skeleton. Herein, we describe our investigation of novel skeletal rearrangements

[^1]
Scheme 1

(a: $R=\mathrm{Me} ; \mathrm{b}: \mathrm{R}=\mathrm{CO}_{2} \mathrm{H} ; \mathrm{c}: \mathrm{R}=\mathrm{CO}_{2} \mathrm{Me}$)

neotripterifordin (8)

Scheme 2

of a kaurene derivative $\mathbf{1 2}$, leading to the first total synthesis of (\pm)-methyl atis-16-en-19-oate (5c).

Pd(II)-Catalyzed Cycloalkenylation Reaction

During the course of investigations directed toward a total synthesis of gibberellin A_{12}, we recently reported a route to the bicyclo[3.2.1]octane derivative $\mathbf{1 5}^{17 \mathrm{~b}}$ which utilized a $\mathrm{Pd}(\mathrm{II})$ promoted cyclization reaction of silyl enol ether 16a (Table 1).

[^2]A stoichiometric amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$ allows the aforesaid cycloalkenylation reaction to proceed under mild conditions; however, this process suffers from low yield on a large scale probably due to tarry $\operatorname{Pd}(0)$ species produced by reductive elimination. This is a serious limitation in the application of cycloalkenylation reaction involving $\mathrm{Pd}(\mathrm{II})$.

To address this issue, reproducible catalytic processes become highly desirable. We demonstrate the viability of such a process as exemplified by the conversion of cross-conjugated silyl enol ethers $\mathbf{1 6}$ to bicyclo[3.2.1]octenone 15. Substrates $\mathbf{1 6}$ were synthesized by the basic treatment of $17{ }^{17}$ followed by silylation. A number of different reaction parameters, such as silyl groups, amount of $\mathrm{Pd}(\mathrm{OAc})_{2}$, concentrations, and solvents were evaluated in order to optimize the reaction (Table 1). Since DMSO has been recently reported to be an excellent solvent for Pd-(II)-catalyzed dehydrosilylation of silyl enol ethers, ${ }^{18}$ the first attempt to perform cycloalkenylation reaction was made by employing 16a in the presence of $10 \mathrm{~mol} \%$ of $\mathrm{Pd}(\mathrm{OAc})_{2}$ under $\mathrm{O}_{2}(1 \mathrm{~atm})$ in DMSO and resulted in the formation of the desired compound 15 in 62% yield along with dienone 19 (21%) (run 1). For evaluation of the effect of the silyl protecting group, we performed the same reaction using $\mathbf{1 6 b}$, in which adduct 15 was isolated in 76% yield (run 2). Switching to TBDMS further enhanced the yield to 81% (run 3). The dependence of the

[^3]
Scheme 3

5c

Scheme 5

isopropenyl group followed by NaBH_{4} reduction. Column chromatography of $\mathbf{2 0}$ on silica gel (hexanes-EtOAc $=5: 1$) provided two fractions. The first fraction gave 20a ($\alpha-\mathrm{OH}$), and on the other hand, the second one afforded 20b $(\beta-\mathrm{OH})$. The structure assigned to $\mathbf{2 0 b}$ is supported by its IR spectrum which shows a band at $3450 \mathrm{~cm}^{-1}$ (hydroxyl) and the phasesensitive NOESY experiment in the NMR spectrum (Scheme 5). The radical deoxygenation reaction ${ }^{21}$ of 20b via the corresponding thioimidazolide proceeded smoothly, giving rearranged product 21 as a sole product. The spectral properties of the rearranged product were consistent with structure 21. ${ }^{22}$ When 20a was subjected to the same conditions, however, 21 was obtained together with 22 (Chugaev-type elimination product) $(\mathbf{2 1 : 2 2}=5: 1)$. The generation of $\mathbf{2 2}$ could be due to the nonbonded interaction between the isopropenyl group in $\mathbf{2 3}$ and $\mathrm{Bu}_{3} \mathrm{Sn}^{\bullet}$ as shown in Scheme 5.

To provide some understanding of the previous results, the calculations were performed on a system involving radical species 24 by means of the semiempirical Hamiltonian PM3 in MOPAC 7.0. ${ }^{23}$ As shown in Figure 1, the steric congestion between the isopropenyl group and α-radical in $\mathbf{2 4 A}$, generated from 20a, makes it less favorable than the alternative 24B, which gives rise to the desired compound 21 (Figure 1).

[^4]To circumvent the above problem, we planned to construct the bicyclo[2.2.2]octane ring system of 5c by the homoallylhomoallyl radical rearrangement process after intramolecular Diels-Alder reaction.

Intramolecular Diels-Alder Reaction Oriented toward Perhydrophenanthrene Construction

Tosylation of alcohol $\mathbf{2 5},{ }^{17}$ followed by cyanation, gave cyanide $\mathbf{2 6}$ in 97% overall yield in two steps, which was then subjected to successive partial reduction with DIBALH (91\%) and Wittig olefination (92\%) to afford 27 as mixture of geometrical isomers ($Z: E=5: 1$). Reduction of 27 with DIBALH enabled the separation of each isomer as the corresponding alcohol, and the desired Z-isomer obtained (74\%) was oxidized with MnO_{2}, followed by methylenation, to give rise to tetraene $\mathbf{1 4}$ in 83% overall yield in two steps. An intramolecular Diels-Alder reaction ${ }^{24}$ of $\mathbf{1 4}$ was conducted in toluene at $200{ }^{\circ} \mathrm{C}$ for 45 h in a sealed tube to afford the desired perhydrophenanthrene derivative $\mathbf{1 3}$ and its stereoisomer $\mathbf{2 8}$ in 74% yield as a 5.7:1 mixture. Although recrystallization of the above mixture from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave pure 13, the separation of stereoisomers $\mathbf{1 3}$ and $\mathbf{2 8}$ was tedious at this stage. However, it was found that the desired major isomer was easily separated as the corresponding saturated ester 29. Accordingly, the above cycloadducts were subjected to carbomethoxylation (70\%) followed by conjugate reduction (94%) with Mg in MeOH^{25} without further purification.

The stereoselectivity observed for the above cycloaddition can be rationalized by considering two conformers ($\mathbf{1 4 A}, \mathbf{B}$). The major product $\mathbf{1 3}$ arises via conformer $\mathbf{1 4 A}$. In the alternative conformer 14B, the diene unit suffers from unfavorable steric interactions with the axial hydrogen as shown in Figure 2. Finally, the stereochemistry of the major isomer was established by transformation into $\mathbf{5 c}$.

(23) Minimum energy structures were located by the global search program GMMX (Version 1.0) (Serena software, Bloomington, IN). The lowest energy structure 24C located in this fashion was then subjected to molecular mechanics minimization using the MMX force field (Gajewski, J. J.; Gilbert, K. E.; Mckelvey, J. In Advances in Molecular Modeling; Liotta, D., Ed.; JAI Press: Greenwich, CT, 1993; Vol. 2, pp 65-92) in the computer program PCMODEL (Version 5.01) (Serena software, Bloomington, IN). Finally, this molecular mechanics structure was reminimized by employing the PM3 model in the program MOPAC (Version 7.0) (Serena software, Bloomington, IN).
(24) For intramolecular Diels-Alder reactions of Br-containing trienes, see: Roush, W. R.; Kageyama, M.; Rita, R.; Brown, B. B.; Warmus, J. S.; Moriarty, K. J. J. Org. Chem. 1991, 56, 1192-1210 and references therein.
(25) Youn, I. K.; Yon, G. H.; Pak, C. S. Tetrahedron Lett. 1986, 27, 2409-2412.

24C

Figure 1.

Figure 2.

Total Synthesis of (\pm)-Methyl Atis-16-en-19-oate (5c)

With the efficient synthesis of 29 realized, the stage was now set for the completion of the synthesis. Ester 29 was converted to 30 via stereoselective methylation (84%) and hydrolysis of the ethylene acetal moiety (100%). To confirm the stereochemistry of keto ester 30, it was subjected to Wolff-Kishner reduction. Namely, treatment of $\mathbf{3 0}$ with excess $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and KOH in bis(ethylene glycol) at $200^{\circ} \mathrm{C}$ furnished the desired (\pm)-methyl kaur-16-en-19-oate ($\mathbf{6 c})^{26}$ (51% in two steps) after reesterification with $\mathrm{CH}_{2} \mathrm{~N}_{2}$. It is surprising that (\pm)-methyl trachyloban-19-oate ($\mathbf{4 c})^{27,28}$ was also obtained in 11% overall yield in two steps. ${ }^{29}$ It should be further noted that the present approach employing the intramolecular Diels-Alder reaction of the bromo diene $\mathbf{1 4}$ provides an efficient route for these diterpenes.

Finally, $\mathbf{3 0}$ was transformed into $(\pm)-5 \mathbf{c}$ as shown in Scheme 7. Reduction of $\mathbf{3 0}$ with NaBH_{4} produced $\mathbf{3 1}$ in 93% yield as a 1:3.6 mixture in which the β-oriented hydroxyl group was predominant. ${ }^{30}$ Hydroxyesters 31 were then acylated with $1,1^{\prime}$ thiocarbonyldiimidazole to afford $\mathbf{1 2}$, which was submitted to

[^5]a deoxygenation reaction; ${ }^{21} \mathrm{Bu}_{3} \mathrm{SnH}$ and catalytic amounts of AIBN in toluene were added to $\mathbf{1 2}$ in toluene (0.01 m) over a period of 3 h . Under these reaction conditions, the homoallyl radical generated from $\mathbf{1 2}$ was smoothly rearranged, as expected, via successive 3 -exo-trig cyclization and 3-exo fragmentation, to furnish 5 c as the sole product in 68% overall yield in two steps. ${ }^{31}$ The spectral properties (${ }^{1} \mathrm{H}$ NMR and IR) of $(\pm)-\mathbf{5 c}$ were identical in all respects to those of $(-)-5 \mathrm{c}$ provided by Coates.

Conclusions

We have synthesized racemic methyl kaur-16-en-19-oate ($\mathbf{6 c}$), methyl trachyloban-19-oate (4c), and methyl atis-16-en-19-oate $\mathbf{(5 c)}$ via a common intermediate $\mathbf{3 0}$. The key step in the synthesis of $\mathbf{5 c}$ is a homoallyl-homoallyl radical rearrangement that allowed, in a one-pot process, the construction of the atisirene skeleton without isomerization of the exomethylene moiety. Moreover, this successful approach opens a novel pathway for the syntheses of other atisirene-type diterpenoids and diterpene alkaloids such as atisine.

Experimental Section ${ }^{32}$

General Method for the Preparation of Silyl Enol Ethers (16ac). To a stirred solution of LDA (1.2 mmol) in THF $(2 \mathrm{~mL})$ cooled to $-78{ }^{\circ} \mathrm{C}$ was added dropwise a solution of substrate $17^{17}(1.0 \mathrm{mmol})$ in THF (1 mL). After 45 min , a solution of TBDMSCl (1.5 mmol) and HMPA (1.2 mmol) in THF (1 mL) was added at the same temperature, and the resulting mixture was allowed to warm to $0^{\circ} \mathrm{C}$. After removal of the solvent, the residue was diluted with hexane, washed with $\mathrm{H}_{2} \mathrm{O}$ and brine, and dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Removal of the solvent and chromatography of the crude product on silica gel with hexanes-EtOAc (20:1 v/v) afforded the TBDMS enol ether as a colorless oil (yields of $95-100 \%$). TMS/TES enol ethers were prepared in the same manner as the corresponding TBDMS enol ethers, by quenching the lithium enolates with chlorotrimethylsilane (1.5 equiv)/chlorotriethylsilane (1.5 equiv). TMS enol ether was purified by bulb-to-bulb distillation.

[^6]
Scheme 6

27
(1) DIBALH, toluene, $0^{\circ} \mathrm{C}$
(2) MnO_{2}, toluene
(3) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{MeBr}$,
"BuLi, THF
(83\% for 2 steps)

(5.7: 1)
28
(土)-2-(tert-Butyldimethylsiloxy)-5-(2-(methoxymethoxy)ethyl)-5-(2-propenyl)cyclohexa-1,3-diene (16c). IR: 1670 and $1040 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.22(6 \mathrm{H}, \mathrm{s}), 1.07(9 \mathrm{H}, \mathrm{s}), 1.75(1 \mathrm{H}, \mathrm{dt}, J$ $=13.5$ and 7.0$), 1.86(1 \mathrm{H}, \mathrm{dt}, J=13.5$ and 7.0$), 2.11-2.30(4 \mathrm{H}, \mathrm{m})$, $3.27(3 \mathrm{H}, \mathrm{s}), 3.65(2 \mathrm{H}, \mathrm{t}, J=7.0), 4.56(2 \mathrm{H}, \mathrm{s}), 4.85-4.93(1 \mathrm{H}, \mathrm{m})$, $5.04-5.16(2 \mathrm{H}, \mathrm{m}), 5.55(1 \mathrm{H}, \mathrm{d}, J=10.0)$, and $5.77-5.93(2 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-4.24,18.30,25.96,32.87,36.63,38.27$, 43.61, 54.89, 64.69, 96.56, 101.27, 117.51, 125.77, 135.17, 136.73, and 147.86. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$: C, 67.41; H, 10.12. Found: C, 67.35; H, 10.04.
(\pm)-5-(2-(Methoxymethoxy)ethyl)-5-(2-propenyl)-2-(trimethylsi-loxy)cyclohexa-1,3-diene (16a). IR: 1680,1650 , and $1020 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.19(9 \mathrm{H}, \mathrm{s}), 1.60-1.80(2 \mathrm{H}, \mathrm{m}), 2.19(2 \mathrm{H}$, $\mathrm{d}, J=5.5), 2.06-2.24(2 \mathrm{H}, \mathrm{m}), 3.35(3 \mathrm{H}, \mathrm{s}), 3.51-3.66(2 \mathrm{H}, \mathrm{m}), 4.59$ $(2 \mathrm{H}, \mathrm{s}), 4.72-4.80(1 \mathrm{H}, \mathrm{m}), 4.96-5.09(2 \mathrm{H}, \mathrm{s}), 5.55(1 \mathrm{H}, \mathrm{d}, J=10.0)$, $5.65(1 \mathrm{H}$, dd, $J=10.0$ and 2.0$)$, and $5.70-5.83(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.32,32.86,36.63,38.36,43.70,54.90,64.71$, $96.56,101.00,117.47,125.83,135.19,136.76$, and 147.76. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 64.82 ; \mathrm{H}, 9.52$. Found: C, $64.53 ; \mathrm{H}, 9.36$.
(\pm)-5-(2-(Methoxymethoxy)ethyl)-5-(2-propenyl)-2-(triethylsiloxy)-cyclohexa-1,3-diene (16b). IR: 1655 and $1050 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 0.76(2 \mathrm{H}, \mathrm{q}, J=7.7), 1.10(3 \mathrm{H}, \mathrm{t}, J=7.7), 1.76(1 \mathrm{H}$, $\mathrm{dt}, J=13.5$ and 7.3$), 1.87(1 \mathrm{H}, \mathrm{dt}, J=13.5$ and 7.3$), 2.12-2.30(4 \mathrm{H}$, $\mathrm{m}), 3.27(3 \mathrm{H}, \mathrm{s}), 3.66(2 \mathrm{H}, \mathrm{t}, J=7.3), 4.57(2 \mathrm{H}, \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{dt}, J=$
4.0 and 2.0$), 5.05-5.18(2 \mathrm{H}, \mathrm{m}), 5.55(1 \mathrm{H}, \mathrm{d}, J=10.0), 5.85(1 \mathrm{H}$, ddt, $J=17.5,10.0$, and 7.5$)$, and $5.91(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and 2.0$) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 5.43,7.00,32.92,36.64,38.29,43.64,54.90$, $64.72,96.59,100.56,117.51,125.80,135.22,136.76$, and 147.91. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 67.41 ; \mathrm{H}, 10.12$. Found: C, 67.32; H, 10.42.

Palladium-Catalyzed Cycloalkenylation Reaction. (土)-5-(2-(Methoxymethoxy)ethyl)-7-methylidene-cis-bicyclo[3.2.1]oct-3-en-2-one (15) ${ }^{17 \mathrm{~b}}$ (as a Typical Procedure; Run 4). To a stirred solution of TBDMS enol ether $\mathbf{1 6 c}(78.7 \mathrm{mg}, 0.233 \mathrm{mmol})$ in DMSO $(4.6 \mathrm{~mL})$ was added $\mathrm{Pd}(\mathrm{OAc})_{2}(2.60 \mathrm{mg}, 11.6 \mu \mathrm{~mol})$ at room temperature, and the resulting solution was again stirred under $\mathrm{O}_{2}(1 \mathrm{~atm})$ for 4 h . The reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and filtered through Celite to remove Pd black. $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added to the filtrate, and the layers were separated. The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with ice-cold $10 \% \mathrm{HCl}$, saturated NaHCO_{3} and brine and dried. After removal of the solvent, the residue was chromatographed. Elution with a $2: 1$ mixture of hexane-EtOAc furnished $\mathbf{1 5}^{17 \mathrm{~b}}(42.4 \mathrm{mg}, 82 \%), \mathbf{1 8}(1.7 \mathrm{mg}, 3 \%)$, and 19 ($1.6 \mathrm{mg}, 3 \%$), each as a colorless oil.
(\pm)-5-(2-(Methoxymethoxy)ethyl)-7-methyl-cis-bicyclo[3.2.1]octa-3,6-dien-2-one (18). IR: $1675 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): δ $1.78(3 \mathrm{H}, \mathrm{d}, J=1.8), 1.96(1 \mathrm{H}, \mathrm{dt}, J=14.0$ and 6.5$), 2.10(1 \mathrm{H}, \mathrm{dt}, J$ $=14.0$ and 6.5$), 2.46(1 \mathrm{H}$, ddd, $J=9.5,4.5$, and 1.8$), 2.56(1 \mathrm{H}, \mathrm{d}, J$ $=9.5), 3.15(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=4.5), 3.36(3 \mathrm{H}, \mathrm{s}), 3.66(2 \mathrm{H}, \mathrm{t}, J=6.6)$, $4.62(2 \mathrm{H}, \mathrm{s}), 5.35(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and 1.8$), 6.01(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and 7.25 $(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and 1.8$) .{ }^{13} \mathrm{C}$ NMR ($75.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.67$, $35.38,51.08,55.47,55.67,62.18,64.74,96.60,121.71,139.19,142.85$, 160.01, and 199.99. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 70.24; H, 8.16. Found: C, 70.20; H, 8.10.
(\pm)-4-(2-(Methoxymethoxy)ethyl)-4-(2-propenyl)-cyclohexa-2,5-dien-1-one (19). IR: 1665 and $1625 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.00(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=7.0), 2.38(2 \mathrm{H}, \mathrm{d}, J=7.3), 3.29(3 \mathrm{H}, \mathrm{s})$, $3.37(2 \mathrm{H}$, br $\mathrm{t}, J=7.0), 4.50(2 \mathrm{H}, \mathrm{s}), 5.00-5.12(2 \mathrm{H}, \mathrm{m}), 5.50-5.67$ $(1 \mathrm{H}, \mathrm{m})$, and $6.32(2 \mathrm{H}, \mathrm{dt}, J=10.5$ and 2.3$) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 38.67,44.21,44.50,55.38,64.12,96.55,119.20,129.88$, 131.80, 153.75, and 186.20. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 70.24 ; \mathrm{H}$, 8.16. Found: C, 70.00; H, 8.44.
$\left(1 R^{*}, 2 R^{*}, 4 S^{*}, 5 S^{*}\right)-5-(($ Methoxymethoxy $)$ ethyl)-4-(methylethenyl)-7-methylidenebicyclo[3.2.1]octan-2-ol (20a) and ($1 R^{*}, 2 S^{*}, 4 S^{*}, 5 S^{*}$)-5-((Methoxymethoxy)ethyl)-4-(methylethenyl)-7-methylidenebicyclo-[3.2.1]octan-2-ol (20b). To a stirred solution of ketone $\mathbf{1 5}^{17 \mathrm{~b}}$ (134 mg, 0.508 mmol) in 2-propanol (5 mL) was added NaBH_{4} ($193 \mathrm{mg}, 5.09$ mmol) at room temperature, and then the mixture was stirred at room temperature for 12 h . After removal of the solvent, saturated brine (7 mL) was added. The resulting mixture was extracted with CHCl_{3}, and then the organic layer was dried and evaporated to leave an oil, which was chromatographed. Elution with a 5:1 mixture of hexane-EtOAc afforded α-alcohol 20a ($52.9 \mathrm{mg}, 39 \%$) followed by β-alcohol 20b ($62.4 \mathrm{mg}, 46 \%$), each as a colorless oil. 20a: IR: $3450 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.23(1 \mathrm{H}, \mathrm{br}$ dd, $J=11.5$ and 5.0$), 1.52$ $(1 \mathrm{H}, \mathrm{d}, J=14.5), 1.56(1 \mathrm{H}, \mathrm{ddd}, J=14.0,8.5$, and 6.0$), 1.77(1 \mathrm{H}, \mathrm{br}$ s), $1.93(3 \mathrm{H}, \mathrm{d}, J=0.6), 2.03(1 \mathrm{H}, \mathrm{ddd}, J=14.0,8.5$, and 5.5$), 2.08$ $(1 \mathrm{H}, \mathrm{ddd}, J=14.0,8.5$, and 4.5$), 2.22(1 \mathrm{H}, \mathrm{d}, J=8.5), 2.28-2.34$ $(2 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and 1.5$), 2.71(1 \mathrm{H}, \mathrm{dd}, J=5.0$ and 3.5), $3.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.82-4.91(3 \mathrm{H}, \mathrm{m})$, and $5.04-5.07(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 23.71,31.55,32.94,37.93,43.85,45.07$, $48.85,49.76,55.15,64.79,72.24,96.43,105.67,113.32,149.37$, and 152.40. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}$: C, 72.13; H, 9.84. Found: C, 72.17; H, 9.80. 20b: IR: $3450 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.40(1 \mathrm{H}$, ddd, $J=14.0,11.5$, and 8.0$), 1.44(1 \mathrm{H}, \mathrm{ddd}, J=12.0$, 8.0 , and 5.5$), 1.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.78(1 \mathrm{H}$, ddd, $J=15.0,9.0$, and 5.5$)$, $1.78-1.81(3 \mathrm{H}, \mathrm{m}), 1.84(1 \mathrm{H}, \mathrm{ddd}, J=15.0,9.0$, and 5.5$), 1.89(1 \mathrm{H}$, dd, $J=12.0$ and 1.5$), 2.27(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=8.0), 2.32(1 \mathrm{H}, \mathrm{dt}, J=12.0$ and 2.5$), 2.61(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=5.5$ and 3.5$), 3.35(3 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}$, ddd, $J=13.5,9.0$, and 6.7), $3.58(1 \mathrm{H}$, ddd, $J=13.5,9.0$, and 5.5$)$, $3.88(1 \mathrm{H}$, ddd, $J=11.5,6.0$, and 3.5$), 4.60(2 \mathrm{H}, \mathrm{s}), 4.76(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.90\left(1 \mathrm{H}\right.$, br s), and $4.91(1 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (125.65 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.62,35.09,37.37,38.31,44.21,44.74,50.45,50.67$, $55.22,64.89,70.20,96.45,106.58,114.24,147.95$, and 150.94. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}$: C, $72.14 ; \mathrm{H}, 9.84$. Found: C, $71.94 ; \mathrm{H}, 9.91$.

Scheme 7

(2) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, reflux (68\% for 2 steps)

(\pm)-Metyl atis-16-en-19-oate (5c)

2-[(1S*, $\left.2 S^{*}, 4 S^{*}\right)$-1-(2-(Methoxymethoxy)ethyl)-5-methyl-idenebicyclo[2.2.2]octan-2-yl]prop-1-ene (21). (A) From 20b: To a stirred solution of $\mathbf{2 0 b}(40.3 \mathrm{mg}, 0.151 \mathrm{mmol})$ in 1,2-dichloroethane $(1 \mathrm{~mL})$ was added $1,1^{\prime}$-thiocarbonyldiimidazole ($90.8 \mathrm{mg}, 0.459 \mathrm{mmol}$) at room temperature, and then the mixture was again stirred at room temperature for 13 h . After removal of the solvent, the residue was chromatographed. Elution with a $2: 1$ mixture of hexane-EtOAc gave the thioimidazolide $(46.8 \mathrm{mg}, 82 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.57(1 \mathrm{H}$, ddd, $J=12.5,6.0$, and 2.0$), 1.62(1 \mathrm{H}$, ddd, $J=14.0,9.0$, and 6.0$), 1.85-2.11(7 \mathrm{H}, \mathrm{m}), 2.26(1 \mathrm{H}, \mathrm{dd}, J=$ 16.0 and 2.0$), 2.40-2.51(2 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{dd}, J=6.0$ and 3.0$)$, $3.34(2 \mathrm{H}, \mathrm{s}), 3.48-3.70(2 \mathrm{H}, \mathrm{m}), 4.86-4.88(1 \mathrm{H}, \mathrm{m}), 4.92(1 \mathrm{H}, \mathrm{t}, J=$ $1.5), 4.96-5.03(2 \mathrm{H}, \mathrm{m}), 5.08(1 \mathrm{H}, \mathrm{ddd}, J=9.0,6.0$, and 3.0$), 7.02$ $(1 \mathrm{H}, \mathrm{dd}, J=1.1$ and 1.5$), 7.62(1 \mathrm{H}, \mathrm{t}, J=1.5)$, and $8.33(1 \mathrm{H}, \mathrm{t}, J=$ 1.1). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.37,29.23,37.70,38.04$, $44.28,44.31,46.57,50.43,55.27,64.68,83.26,96.53,108.30,115.13$, 118.02, 130.88, 136.89, 147.18, 149.58, and 183.48. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left(\mathrm{M}^{+}\right): 376.1819$. Found: 376.1772 .

To a stirred solution of the above thioimidazolide ($24.4 \mathrm{mg}, 64.8$ $\mu \mathrm{mol})$ in degassed toluene (3 mL) was slowly added a degassed toluene solution (0.3 mL) of $\mathrm{Bu}_{3} \mathrm{SnH}(0.025 \mathrm{~mL}, 90.2 \mu \mathrm{~mol})$ and AIBN (0.6 $\mathrm{mg}, 3.7 \mu \mathrm{~mol}$) over a period of 2.5 h under reflux. After 1 h of refluxing, $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added, and the resulting mixture was successively washed with $5 \% \mathrm{HCl}(2 \mathrm{~mL})$, saturated NaHCO_{3} and brine, dried, and evaporated to yield an oil, which was chromatographed. Elution with a $30: 1$ mixture of hexane-EtOAc afforded 21 (10.8 mg , 67%) as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right): 1639$ and $1650 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31(1 \mathrm{H}$, ddd, $J=11.5,4.5$, and 2.0$), 1.34$ $(1 \mathrm{H}, \mathrm{ddd}, J=11.5,5.0$, and 2.0$), 1.40-1.81(9 \mathrm{H}, \mathrm{m}), 2.05-2.13(1 \mathrm{H}$, $\mathrm{m}), 2.17-2.24(3 \mathrm{H}, \mathrm{m}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.53(2 \mathrm{H}, \mathrm{dt}, J=9.0$ and 6.0$)$, $4.57(2 \mathrm{H}, \mathrm{s}), 4.60(1 \mathrm{H}, \mathrm{q}, J=2.0), 4.73(1 \mathrm{H}, \mathrm{q}, J=2.0), 4.76-4.78$ $(1 \mathrm{H}, \mathrm{m}), 4.79-4.81(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(125.65 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 21.76, 26.76, 26.82, 33.95, 35.30, 36.05, 37.62, 42.39, 48.91, 55.26, 64.40, 96.55, 105.33, 113.62, 147.74, and 151.94. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}$: 250.1931. Found: 250.1939.
(B) From 20a: To a stirred solution of 20a $(28.8 \mathrm{mg}, 0.108 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added 1, 1^{\prime}-thiocarbonyldiimidazole $(58.4 \mathrm{mg}$, $0.328 \mathrm{mmol})$ and DMAP $(41.9 \mathrm{mg}, 0.235 \mathrm{mmol})$ at room temperature,
and then the resulting yellowish mixture was again stirred at room temperature for 20 h . After removal of the solvent, the residue was chromatographed. Elution with a $3: 1$ mixture of hexane-EtOAc furnished the thioimidazolide ($36.8 \mathrm{mg}, 91 \%$) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.14(1 \mathrm{H}, \mathrm{dd}, J=11.5$ and 5.0$), 1.64$ $(1 \mathrm{H}, \mathrm{ddd}, J=12.5,8.0$, and 6.0$), 1.89(3 \mathrm{H}, \mathrm{d}, J=0.6), 1.88-1.99$ $(1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}$, ddd, $J=12.5,7.5$, and 5.0$), 2.26-2.44(5 \mathrm{H}, \mathrm{m})$, $3.15(1 \mathrm{H}$, br dd, $J=5.0$ and 3.0$), 3.36(3 \mathrm{H}, \mathrm{s}), 3.46-3.64(2 \mathrm{H}, \mathrm{m})$, $4.60(2 \mathrm{H}, \mathrm{s}), 4.96(1 \mathrm{H}, \mathrm{t}, J=1.5), 4.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.02(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.09(1 \mathrm{H}$, br t, $J=2.5), 5.51(1 \mathrm{H}$, br t, $J=4.0), 7.03(1 \mathrm{H}, \mathrm{dd}, J=1.4$ and 0.8$), 7.65(1 \mathrm{H}, \mathrm{t}, J=1.4)$, and $8.34(1 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75.4 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.15,27.99,33.92,37.54,43.79,45.22,45.66,47.59$, $55.24,64.58,83.78,96.49,108.18,113.14,118.17,130.89,137.04$, 147.01, 149.88, and 183.59. HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: 376.1819$. Found: 376.1819.

To a stirred solution of the above thioimidazolide $(31.7 \mathrm{mg}, 84.2$ $\mu \mathrm{mol})$ in degassed toluene (4 mL) was slowly added a degassed toluene solution $(0.4 \mathrm{~mL})$ of $\mathrm{Bu}_{3} \mathrm{SnH}(34 \mu \mathrm{~L}, 0.123 \mathrm{mmol})$ and $\operatorname{AIBN}(1 \mathrm{mg}$, $6 \mu \mathrm{~mol}$) over a period of 2 h under reflux. After 1 h of refluxing, the solvent was evaporated to give an oil, which was directly chromatographed. Elution with a $30: 1$ mixture of hexane-EtOAc provided $21(11.8 \mathrm{mg}, 56 \%)$ and $22(2.4 \mathrm{mg}, 11 \%)$ as a colorless oil. 22: IR $\left(\mathrm{CHCl}_{3}\right): 1645$ and $1660 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.33$ $(1 \mathrm{H}, \mathrm{br}$ ddd, $J=10.5,3.5$, and 1.0$), 1.77(3 \mathrm{H}, \mathrm{dd}, J=1.2$ and 0.6$)$, $1.61(1 \mathrm{H}$, ddd, $J=13.0,9.0$, and 5.5$), 1.81-1.92(2 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}$, $\mathrm{br} \mathrm{dq}, J=16.0$ and 2.0$), 2.40(\mathrm{dt}, J=16.0$ and 2.0$), 2.72(1 \mathrm{H}, \mathrm{dd}, J$ $=3.5$ and 1.5$), 2.91(1 \mathrm{H}, \mathrm{dd}, J=6.5$ and 3.5$), 3.58(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}$, $\mathrm{dt}, J=9.0$ and 5.5$), 3.72(1 \mathrm{H}, \mathrm{dt}, J=9.0$ and 5.0$), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $4.61(2 \mathrm{H}, \mathrm{s}), 4.71-4.76(1 \mathrm{H}, \mathrm{m}), 4.81-4.84(1 \mathrm{H}, \mathrm{m}), 4.86-4.90(1 \mathrm{H}$, $\mathrm{m}), 5.27(1 \mathrm{H}, \mathrm{dd}, J=9.0$ and 3.5$)$, and $5.98(1 \mathrm{H}$, dddd, $J=9.0,6.5$, 1.5, and 1.0); ${ }^{13} \mathrm{C}$ NMR ($75.3 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 22.26,37.29,38.41$, 43.42, 44.35, 44.39, 55.27, 57.16, 64.68, 96.50, 101.37, 115.02, 127.96, 132.92, 146.33, and 157.11. HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$: 248.1776. Found: 248.1782 .

3-[Spiro[(1R*,4S*,5S*)-4-(methylethenyl)-7-methylidenebicyclo-[3.2.1]octan-2, $2^{\prime}-\mathbf{1}^{\prime}, \mathbf{3}^{\prime}$-dioxolan]-5-yl]propanenitrile (26). To a solution of $\mathbf{2 5}^{17 \mathrm{~b}}(1.70 \mathrm{~g}, 6.44 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$ was added p-toluenesulfonyl chloride $(1.16 \mathrm{~g}, 8.41 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and then the
mixture was placed in a refrigerator for 14 h . After the addition of $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed in succession with $10 \% \mathrm{CuSO}_{4}(10 \mathrm{~mL} \times$ 3), $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, and brine, dried, and evaporated to leave the tosylate $(2.75 \mathrm{~g})$ as a white solid, which was used in the next step without further purification.

To a stirred solution of the above tosylate $(2.75 \mathrm{~g})$ in DMSO (16 mL) was added powdered $\mathrm{NaCN}(442 \mathrm{mg}, 8.57 \mathrm{mmol})$ at room temperature, and then the resulting clear solution was again stirred at room temperature for 24 h . After addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with $\mathrm{H}_{2} \mathrm{O}$ $(16 \mathrm{~mL})$ and brine, dried, and evaporated to give a white solid, which was chromatographed. Elution with a 5:1 mixture of hexane-EtOAc afforded 26 ($1.71 \mathrm{~g}, 97 \%$ for 2 steps) as a white solid. An analytical sample, obtained as colorless prisms by recrystallization of a small amount of this material from $\mathrm{Et}_{2} \mathrm{O}$-hexane, exhibited mp 89.0-90.5 ${ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right): 2260 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.37$ (1 H , ddd, $J=12.0,5.5$, and 1.5), $1.57(1 \mathrm{H}$, dd, $J=15.0$ and 1.5$)$, $1.65(1 \mathrm{H}$, ddd, $J=13.5,10.5$, and 6.0$), 1.94(3 \mathrm{H}, \mathrm{s}), 1.97(1 \mathrm{H}$, ddd, $J=13.5,10.5$, and 5.5$), 2.10(1 \mathrm{H}, \mathrm{dd}, J=15.0$ and 9.5$), 2.19-2.46$ $(6 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{dd}, J=5.5$ and 1.5$), 3.86-4.04(4 \mathrm{H}, \mathrm{m}), 4.80(1 \mathrm{H}$, br s), $4.86(1 \mathrm{H}$, br s $), 4.93\left(1 \mathrm{H}\right.$, br s), and $5.05\left(1 \mathrm{H}\right.$, br s).${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.5,22.17,34.14,34.86,36.69,44.00,44.32$, $49.71,50.87,63.88,64.70,108.80,110.24,114.96,120.40,148.32$, and 148.99. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 74.69; H, 8.48; N, 5.12. Found: C, $74.54 ; \mathrm{H}, 8.44 ; \mathrm{N}, 4.89$.

Ethyl 2-Bromo-3-[spiro[(1R*, $\left.4 S^{*}, 5 S^{*}\right)$-4-(methylethenyl)-7-methylidenebicyclo[3.2.1]octan-2,2'-1', 3^{\prime}-dioxolan]-5-yl]pent-2-en-1-oate (27). To a stirred solution of $26(186 \mathrm{mg}, 0.680 \mathrm{mmol})$ in toluene (5 mL) was added dropwise DIBALH $(0.85 \mathrm{~mL}, 0.95 \mathrm{M}$ in hexane, 0.808 mmol) at $-78{ }^{\circ} \mathrm{C}$. After 5 min , saturated $\mathrm{NH}_{4} \mathrm{Cl}(2$ mL) was added at $-78^{\circ} \mathrm{C}$, and then the mixture was allowed to warm to room temperature over a period of 10 min . After addition of 10% HCl (20 drops) at room temperature, the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with saturated NaHCO_{3} and brine, dried, and evaporated to provide an oil, which was chromatographed. Elution with a $7: 1$ mixture of hexane-EtOAc furnished the aldehyde ($172 \mathrm{mg}, 91 \%$), as a colorless oil, which was immediately used in the next reaction. IR $\left(\mathrm{CHCl}_{3}\right): 1722$ and 2730 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.37(1 \mathrm{H}$, ddd, $J=11.0,5.0$, and 1.7), $1.50-1.64(2 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}$, ddd, $J=14.0,8.0$, and 5.0$)$, $1.92(3 \mathrm{H}, \mathrm{s}), 2.09(1 \mathrm{H}, \mathrm{dd}, J=14.5$ and 8.5$), 2.20-2.43(5 \mathrm{H}, \mathrm{m}), 2.5$ $(1 \mathrm{H}$, ddd, $J=10.5,5.0$, and 1.6$), 2.59(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.0), 3.85-4.03$ $(4 \mathrm{H}, \mathrm{m}), 4.74-4.78(1 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{d}, J=1.5), 4.91(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.01-5.05(1 \mathrm{H}, \mathrm{m}), 9.75(1 \mathrm{H}, \mathrm{t}, J=1.6) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 22.40,30.05,35.02,36.84,40.04,43.87,44.64,50.11,51.20$, 63.85, 64.67, 108.36, 114.51, 148.79, and 204.84. HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 276.1725 . Found: 276.1724 .

A mixture of the above aldehyde ($143.5 \mathrm{mg}, 0.519 \mathrm{mmol}$) and the Wittig reagent ${ }^{33}(326 \mathrm{mg}, 0.793 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was heated at $80{ }^{\circ} \mathrm{C}$ for 4 h . After further addition of the Wittig reagent (64.6 $\mathrm{mg}, 0.157 \mathrm{mmol}$), heating of the resulting mixture was continued at $80^{\circ} \mathrm{C}$ for 1 h . The solvent was removed under reduced pressure, and the residue was chromatographed. Elution with a $7: 1$ mixture of hexane-EtOAc gave rise to $27(204 \mathrm{mg}, 92 \%)$ as a mixture of Z - and E-isomers in the ratio 5:1. IR: $1630,1660,1718$ (middle, $\mathrm{C}=\mathrm{O}$ of E-ester), and 1730 (strong, $\mathrm{C}=\mathrm{O}$ of Z-ester) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.32(2.5 \mathrm{H}, \mathrm{t}, J=7.2 ; 3 \mathrm{H}$ for Z-ester $), 1.34(0.5 \mathrm{H}, \mathrm{t}, J=$ $7.2 ; 3 \mathrm{H}$ for E-ester), $1.28-1.42(1 \mathrm{H}, \mathrm{m}), 1.52-1.62(1 \mathrm{H}, \mathrm{m}), 1.65-$ $1.83(1 \mathrm{H}, \mathrm{m}), 1.92(0.5 \mathrm{H}, \mathrm{s} ; 3 \mathrm{H}$ for E-ester $), 1.93(2.5 \mathrm{H}, \mathrm{s} ; 3 \mathrm{H}$ for Z-ester), 2.04-2.16 ($1 \mathrm{H}, \mathrm{m}$), 2.20-2.62 ($8 \mathrm{H}, \mathrm{m}$), 3.87-4.02 ($4 \mathrm{H}, \mathrm{m}$), $4.26(2 \mathrm{H}, \mathrm{q}, J=7.2), 4.75-4.82(1 \mathrm{H}, \mathrm{m}), 4.87-4.95(2 \mathrm{H}, \mathrm{m}), 5.00-$ $5.06(1 \mathrm{H}, \mathrm{m}), 6.60(0.17 \mathrm{H}, \mathrm{t}, J=8.4 ; 1 \mathrm{H}$ for E-ester $)$, and $7.24(0.83 \mathrm{H}$, $\mathrm{t}, J=8.4 ; 1 \mathrm{H}$ for Z-ester). HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{BrO}_{4}\left(\mathrm{M}^{+}\right)$: 424.1248. Found: 424.1246.
$\left(1 R^{*}, 4 S^{*}, 5 S^{*}\right)$-5-[(Z)-4-Bromohexa-3,5-dienyl]-4-(methylethenyl)-7-methylidenebicyclo[3.2.1]octane-2-one 2-Ethylene Acetal (14). To a stirred solution of $27(195 \mathrm{mg}, 0.458 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$ was added dropwise DIBALH ($1.0 \mathrm{~mL}, 0.95 \mathrm{M}$ hexane, 0.95 mmol) at 0
${ }^{\circ} \mathrm{C}$. After 10 min of stirring at $0^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$. The mixture was diluted with hexane (3 mL) and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$, and the resulting mixture was again stirred at room temperature until a heavy white precipitate began to form. After addition of MgSO_{4} at $0^{\circ} \mathrm{C}$, the mixture was filtered through Celite. The filtrate was concentrated to produce an oil, which was chromatographed. Elution with a 5:4 mixture of hexane- $\mathrm{Et}_{2} \mathrm{O}$ afforded the desired Z-isomer ($129 \mathrm{mg}, 74 \%$) and then the E-isomer ($24.9 \mathrm{mg}, 14 \%$), each as a colorless oil. Z-isomer: IR: $3400 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29(1 \mathrm{H}, \mathrm{dt}, J=12.5$ and 5.0$), 1.36(1 \mathrm{H}$, ddd, $J=12.0,5.0$, and 1.5$), 1.57(1 \mathrm{H}, \mathrm{d}, J=$ $15.0), 1.67(1 \mathrm{H}, \mathrm{dt}, J=12.5$ and 5.0$), 1.93(3 \mathrm{H}, \mathrm{s}), 2.10(1 \mathrm{H}, \mathrm{dd}, J=$ 15.0 and 9.5$), 2.27-2.40(6 \mathrm{H}, \mathrm{m}), 2.44(1 \mathrm{H}, \mathrm{d}, J=9.5), 2.59(1 \mathrm{H}, \mathrm{br}$ $\mathrm{d}, J=5.0), 3.86-4.04(4 \mathrm{H}, \mathrm{m}), 4.22(2 \mathrm{H}, \mathrm{d}, J=6.0), 4.74-4.82(1 \mathrm{H}$, $\mathrm{m}), 4.92(2 \mathrm{H}, \mathrm{br}$ s $), 4.99-5.07(1 \mathrm{H}, \mathrm{m})$, and $5.95(1 \mathrm{H}, \mathrm{t}, J=7.0) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 22.60,26.70,34.86,36.57,39.77,44.35$, $44.44,49.60,51.03,63.57,64.42,67.98,107.85,110.45,114.08,126.27$, 129.93, 148.34, and 149.82. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrO}_{3}$: C, 59.53; $\mathrm{H}, 7.10 ; \mathrm{Br}, 20.85$. Found: C, 59.40; H, 7.10; Br, 20.74. E-isomer: IR: $3450 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.27(1 \mathrm{H}, \mathrm{dt}, J=$ 12.5 and 4.5$), 1.34(1 \mathrm{H}$, ddd, $J=11.5,5.5$, and 1.5$), 1.56(1 \mathrm{H}, \mathrm{dd}, J$ $=15.0$ and 1.5$), 1.65(1 \mathrm{H}, \mathrm{dt}, J=12.5$ and 4.5$), 1.85(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=$ $6.0), 1.93-2.34(6 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{br}$ d, $J=9.5), 2.58(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=$ $5.5), 3.86-4.02(4 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{d}, J=6.0), 4.81(1 \mathrm{H}, \mathrm{dd}, J=1.5$ and 0.5$), 4.89(1 \mathrm{H}, \mathrm{d}, J=1.5), 4.91(1 \mathrm{H}, \mathrm{s}), 5.02-5.04(1 \mathrm{H}, \mathrm{m})$, and $5.99(1 \mathrm{H}, \mathrm{t}, J=8.0) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 22.43,25.62$, $35.03,37.09,38.08,44.41,44.71,49.81,51.06,62.55,63.77,64.58$, 108.08, 110.42, 114.06, 124.19, 135.31, 148.95, and 149.71. HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BrO}_{3}\left(\mathrm{M}^{+}\right): 382.1143$. Found: 382.1166 .

A mixture of the above Z-isomer ($33.6 \mathrm{mg}, 87.7 \mu \mathrm{~mol}$) and MnO_{2} $(379 \mathrm{mg})$ in toluene (3 mL) was stirred at room temperature for 4 h . After filtration through Celite, the filtrate was concentrated to afford the aldehyde, which was immediately used without purification.

To a stirred ylide, prepared from methyltriphenylphophonium bromide $(63.9 \mathrm{mg}, 0.179 \mathrm{mmol})$ and $\mathrm{BuLi}(80.0 \mu \mathrm{~L}, 10 \%$ in hexane, 0.125 mmol), in THF (1 mL) was added dropwise a THF solution (1.5 mL) of the above aldehyde at room temperature. After 15 min of stirring at room temperature, saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added, and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and brine, dried, and evaporated to furnish an oil, which was chromatographed. Elution with a $15: 1$ mixture of hexane-EtOAc afforded $14(27.7 \mathrm{mg}, 83 \%)$ as a colorless oil. IR: 1600,1630 , and $1655 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.23-$ $1.42(2 \mathrm{H}, \mathrm{m}), 1.57(1 \mathrm{H}, \mathrm{dd}, J=15.0$ and 1.5$), 1.70(1 \mathrm{H}, \mathrm{ddd}, J=$ $13.5,11.5$ and 5.5$), 1.93(3 \mathrm{H}, \mathrm{s}), 2.10(1 \mathrm{H}$, dd, $J=15.0$ and 9.5$)$, $2.16-2.43(5 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{dd}, J=9.5$ and 1.0$), 2.59(1 \mathrm{H}$, br d, J $=5.5), 3.85-4.05(4 \mathrm{H}, \mathrm{m}), 4.73-4.82(1 \mathrm{H}, \mathrm{m}), 4.86-4.96(2 \mathrm{H}, \mathrm{m})$, $5.00-5.07(1 \mathrm{H}, \mathrm{m}), 5.15(1 \mathrm{H}, \mathrm{d}, J=10.3), 5.51(1 \mathrm{H}, \mathrm{d}, J=16.5)$, $5.93(1 \mathrm{H}, \mathrm{t}, J=7.0)$, and $6.28(1 \mathrm{H}, \mathrm{dd}, J=16.5$ and 10.3$) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 22.67,27.52,34.96,36.61,36.82,44.49,44.53$, 49.74, 51.20, 63.74, 64.56, 107.98, 114.27, 117.29, 125.34, 135.90, 138.84, and 150.26. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{BrO}_{2}$: C, 63.33; $\mathrm{H}, 7.17$; $\mathrm{Br}, 21.06$. Found: C, 63.25; H, 7.13; Br, 20.95.
(\pm)-19,20-Dinor-4-bromokaur-3,16-dien-12-one 12-Ethylene Acetal (13). A toluene solution (16 mL) of $14(155 \mathrm{mg}, 0.409 \mathrm{mmol})$ was heated at $200^{\circ} \mathrm{C}$ in a sealed tube for 45 h . After removal of the solvent, the residue was chromatographed. Elution with a $15: 1$ mixture of hexane $-\mathrm{Et}_{2} \mathrm{O}$ afforded $114 \mathrm{mg}(74 \%)$ of $\mathbf{1 3}+\mathbf{2 8}$ (5.7:1 mixture by ${ }^{1} \mathrm{H}$ NMR) as a solid. Recrystallization of the Diels-Alder adducts $(\mathbf{1 3}+\mathbf{2 8})$ from $\mathrm{Et}_{2} \mathrm{O}$-hexane provided an analytical sample of $\mathbf{1 3}$ as colorless prisms, mp $136.0-137.5^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right)$: 1638 and 1655 cm^{-1}. 13: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.08(3 \mathrm{H}, \mathrm{s}), 1.23(1 \mathrm{H}$, ddd, $J=11.0,5.0$ and 1.5$), 1.30(1 \mathrm{H}, \mathrm{d}, J=8.5), 1.34-1.85(9 \mathrm{H}, \mathrm{m})$, $1.87(1 \mathrm{H}, \mathrm{dd}, J=14.0$ and 8.5$), 2.42(1 \mathrm{H}, \mathrm{dd}, J=12.0$ and 1.5$), 2.60$ $(1 \mathrm{H}, \mathrm{d}, J=5.0), 3.80-4.05(4 \mathrm{H}, \mathrm{m}), 4.95-5.02(1 \mathrm{H}, \mathrm{m})$, and $5.97-$ $6.05(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 12.34,25.22,25.28$, 29.51, 34.92, 37.82, 39.18, 39.60, 42.93, 49.37, 51.76, 51.88, 52.88, 52.77, 63.69, 64.64, 107.55, 110.43, 128.30, 128.39, and 150.02. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{BrO}_{2}: \mathrm{C}, 63.33 ; \mathrm{H}, 7.17 ; \mathrm{Br}, 21.06$. Found: C, 63.33; $\mathrm{H}, 7.17 ; \mathrm{Br}, 21.16 .13+28(5.7: 1):$ IR $\left(\mathrm{CHCl}_{3}\right): 1710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.85-1.10(1 \mathrm{H}, \mathrm{m}), 1.02(2.6 \mathrm{H}, \mathrm{s}), 1.17-$ $1.38(2 \mathrm{H}, \mathrm{m}), 1.25(0.4 \mathrm{H}, \mathrm{s}), 1.56-2.24(12 \mathrm{H}, \mathrm{m}), 2.35(0.15 \mathrm{H}, \mathrm{d}, J=$
$12.0), 2.43(0.85 \mathrm{H}, \mathrm{d}, J=12.0), 2.60(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.0), 3.70(2.6 \mathrm{H}$, s), $3.72(0.4 \mathrm{H}, \mathrm{s}), 3.86-4.03(4 \mathrm{H}, \mathrm{m}), 4.84(0.15 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.87(0.85 \mathrm{H}$, br s), $4.95-5.01(1 \mathrm{H}, \mathrm{m}), 6.48-6.55(0.85 \mathrm{H}, \mathrm{m}), 6.67-6.72(0.15 \mathrm{H}$, m). HRMS clacd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right)$: 358.2142 , found: 358.2144.
(\pm-Methyl 20-Nor-12-oxokaur-16-en-19-oate 12-Ethylene Acetal (29). To a stirred solution of a 5.7:1 mixture of the Diels-Alder adducts $\mathbf{1 3}$ and $\mathbf{2 8}(68.0 \mathrm{mg}, 0.179 \mathrm{mmol})$ and $2,2^{\prime}$-dipyridyl (a crystal as indicator) in THF (3 mL) was added dropwise ${ }^{\mathrm{t}} \mathrm{BuLi}(0.22 \mathrm{~mL}, 1.64$ M in hexane, 0.361 mmol) at $-78^{\circ} \mathrm{C}$. The reaction mixture remained a red color for 40 min . When methyl chloroformate $(80.0 \mu \mathrm{~L}, 1.04$ mmol) was added at $-78^{\circ} \mathrm{C}$, the color dissipated. After 0.5 h of stirring, saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added at $-78^{\circ} \mathrm{C}$. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and then the ethereal layer was washed with brine, dried, and evaporated to provide an oil, which was chromatographed. Elution with a 7:1 mixture of hexane-EtOAc gave the α, β-unsaturated ester ($44.6 \mathrm{mg}, 70 \%$) as a colorless oil.

To a stirred solution of the above material ($8.9 \mathrm{mg}, 24.8 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(1 \mathrm{~mL})$ was added Mg (turnings) $(68.0 \mathrm{mg}, 2.63 \mathrm{mmol})$ at room temperature. After the addition was completed, the mixture was irradiated with ultrasound for 1 min until gas evolution was apparent; the mixture was then stirred at room temperature for 7 h . After addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and $10 \% \mathrm{HCl}$ (5 drops), the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with brine, dried, and evaporated to yield a solid, which was chromatographed. Elution with a 10:1 mixture of hexane-EtOAc gave rise to the saturated ester ($8.4 \mathrm{mg}, 94 \%$). Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave 29, mp $151.5-152.8^{\circ} \mathrm{C}$, as a single isomer. IR (Nujol): $1735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.77(1 \mathrm{H}, \mathrm{dt}, J=13.7$ and 4.0$), 0.99$ $(3 \mathrm{H}, \mathrm{s}), 1.16-2.00(15 \mathrm{H}, \mathrm{m}), 2.09-2.19(3 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{d}, J=$ $12.0), 2.45(1 \mathrm{H}, \mathrm{brt}, J=5.0), 2.57(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=5.0), 3.65(3 \mathrm{H}, \mathrm{s})$, 3.84-4.02 $(4 \mathrm{H}, \mathrm{m}), 4.85\left(1 \mathrm{H}\right.$, br s), and $4.95-4.99(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, CDCl_{3}): $\delta 13.18,18.52,26.93,28.51,29.34,36.90,38.60$, $40.02,40.28,43.14,49.12,49.55,51.11,52.28,55.58,63.63,64.53$, $107.30,110.54,150.35$, and 175.94. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}: \mathrm{C}$, 73.30; H, 8.95. Found: C, 73.59; H, 8.94.
(\pm)-Methyl 12-Oxokaur-16-en-19-oate (30). To a stirred solution of diisopropylamine $(0.240 \mathrm{~mL}, 1.71 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ at $10^{\circ} \mathrm{C}$ was added dropwise $\mathrm{BuLi}(1.0 \mathrm{~mL}, 10 \mathrm{wt} \%$ in hexane, 1.56 mmol$)$. After the solution was stirred for 0.5 h at $-10^{\circ} \mathrm{C}$, it was cooled to $-78^{\circ} \mathrm{C}$, and a THF solution (2 mL) of the above saturated ester (62.3 $\mathrm{mg}, 0.173 \mathrm{mmol}$) was slowly added over a period of 20 min . The mixture was again stirred at $-78^{\circ} \mathrm{C}$ for 1 h ; HMPA $(0.03 \mathrm{~mL}, 0.172$ mmol) was rapidly added. After 8 min of stirring, MeI ($1 \mathrm{~mL}, 16$ mmol) was quickly added at $-78^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and at $0^{\circ} \mathrm{C}$ for 2 h . After addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$, dried, and evaporated to afford a solid, which was chromatographed. Elution with a $10: 1$ mixture of hexane-EtOAc provided the ester ($54.6 \mathrm{mg}, 84 \%$) as a white solid. Subjection of this material to recrystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane gave needles, mp $165.0-165.5^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right): 1715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.72-0.86(1 \mathrm{H}, \mathrm{m}), 0.96(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 0.92-1.86$ $(15 \mathrm{H}, \mathrm{m}), 2.12-2.22(3 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{d}, J=12.0), 2.57(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=5.5), 3.63(3 \mathrm{H}, \mathrm{s}), 3.84-4.02(4 \mathrm{H}, \mathrm{m}), 4.85(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $4.95-$ $5.00(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.49,19.03,21.88$, $28.85,29.58,36.90,38.09,38.95,40.46,40.61,42.98,43.88,49.05$, $51.21,52.24,55.99,56.92,63.63,64.53,107.27,110.58,150.40$, and 178.03. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{4}$: C, 73.76; H, 9.15. Found: C, 73.74; H, 9.07.

To a stirred solution of the above ester ($54.6 \mathrm{mg}, 0.146 \mathrm{mmol}$) in THF (3 mL) was added $15 \% \mathrm{HClO}_{4}(1.5 \mathrm{~mL})$ at room temperature, and then the mixture was stirred at room temperature for 1 h . After addition of saturated NaHCO_{3} at room temperature, the resulting mixture was extracted with EtOAc. The organic layer was washed with brine, dried, and evaporated to leave a solid, which was chromatographed. Elution with a $6: 1$ mixture of hexane-EtOAc furnished $\mathbf{3 0}(48.1 \mathrm{mg}, 100 \%)$ as a white solid. Recrystallization of a small amount of this material from $\mathrm{Et}_{2} \mathrm{O}$-hexane yielded 30, mp $116.0-117.0^{\circ} \mathrm{C}$ (prisms). IR $\left(\mathrm{CHCl}_{3}\right): 1705$ and $1718 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.69(3 \mathrm{H}, \mathrm{s}), 0.80(1 \mathrm{H}, \mathrm{dt}, J=12.0$ and 5.0$)$,
$1.01(1 \mathrm{H}, \mathrm{dt}, J=12.0$ and 4.0$), 1.17(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and 2.0$), 1.19$ $(3 \mathrm{H}, \mathrm{s}), 1.48-1.64(4 \mathrm{H}, \mathrm{m}), 1.68-1.96(5 \mathrm{H}, \mathrm{m}), 2.13-2.22(1 \mathrm{H}, \mathrm{m})$, $2.22(1 \mathrm{H}, \mathrm{d}, J=16.0), 2.34-2.44(3 \mathrm{H}, \mathrm{m}), 2.55(1 \mathrm{H}, \mathrm{dd}, J=16.0$ and 9.0$), 3.22(1 \mathrm{H}, \mathrm{d}, J=4.5), 3.63(3 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and 5.00 $(1 \mathrm{H}, \mathrm{t}, J=2.0) .{ }^{13} \mathrm{C}$ NMR (75.4 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 13.38,18.66,21.47$, $28.61,35.88,37.78,38.99,39.48,39.56,39.78,43.76,44.05,48.12$, $51.25,56.33,56.73,60.58,107.89,148.93,177.77$, and 211.60. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}$: C, 76.33; H, 9.15. Found: C, 76.29; H, 9.11.
(\pm)-Methyl Kaur-16-en-19-oate ($6 c$) and (\pm)-Methyl Trachylo-ban-19-oate (4c). 30 ($43.7 \mathrm{mg}, 0.132 \mathrm{mmol}$) was dissolved in bis(ethylene glycol) (4 mL), and then $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}, 20.62 \mathrm{mmol})$ was added. The resulting mixture was refluxed at $135^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, $\mathrm{KOH}(83.1 \mathrm{mg}, 1.26 \mathrm{mmol}, 85 \%)$ was added at room temperature, and the mixture was allowed to warm to $200^{\circ} \mathrm{C}$ over a period of 2 h . After 6.5 h of heating, $5 \% \mathrm{HCl}(4 \mathrm{~mL})$ was added at room temperature, and then the resulting mixture was extracted with EtOAc. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ (2 $\mathrm{mL})$ and brine, dried, and evaporated to leave a white solid (32.1 mg), which was taken up into $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$. The resulting solution was treated with an ethereal solution of diazomethane at room temperature. After 1 h of stirring at room temperature, AcOH was added until the evolution of nitrogen gas ceased. Saturated $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~mL})$ was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was washed with brine, dried, and evaporated to afford a white solid. Chromatography of the residue on a column of silica gel impregnated with 30% silver nitrate with a 1:3 mixture of benzene-petroleum ether as solvent furnished $\mathbf{4 c}(4.6 \mathrm{mg}, 11 \%)$ and $\mathbf{6 c}(21.3 \mathrm{mg}, 51 \%) . \mathbf{6 c}$, whose spectral data were consistent with those reported, ${ }^{34}$ exhibited mp $89.5-90.0^{\circ} \mathrm{C}$ (prisms). IR: 1650 and $1715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.83(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}), 2.26-2.66(1 \mathrm{H}, \mathrm{m}), 4.73$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.77-4.81(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 15.55$, $18.52,19.29,22.05,28.88,33.23,38.23,39.54,39.79,40.89,41.40$, 43.94, 44.33, 49.06, 51.21, 55.18, 57.16, 103.05, 155.97, and 178.16. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}$: C, 79.70; H, 10.19. Found: C, 79.89; H, 10.17. 4c: IR $\left(\mathrm{CHCl}_{3}\right): 1715 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $0.56-0.59(2 \mathrm{H}, \mathrm{m}), 0.76(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.14(3 \mathrm{H}, \mathrm{s})$, and 3.63 $(3 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR $\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 12.45,18.89,19.82,20.66$, $21.94,22.50,24.35,28.80,33.20,38.23,38.75,39.33,39.57,40.84$, $43.85,50.44,51.21,52.80,57.07$, and 178.09. Comparison of spectral data recorded for synthetic $\mathbf{4 c}$ with those provided by Professor R. M. Coates comfirmed that the total synthesis of $\mathbf{4 c}$ had indeed been accomplished.
(\pm)-Methyl 12-Hydroxykaur-16-en-19-oate (31). To a stirred solution of $\mathbf{3 0}(16.6 \mathrm{mg}, 50.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ was added NaBH_{4} $(16.1 \mathrm{mg}, 0.462 \mathrm{mmol})$ at room temperature, and then the mixture was again stirred at room temperature for 20 min . After removal of the solvent, $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$, saturated brine $(2 \mathrm{~mL})$ and $10 \% \mathrm{HCl}(5$ drops $)$ were added. After separation, the aqueous layer was extracted with CHCl_{3}. The combined organic layers were washed with saturated NaHCO_{3} and brine, dried, and evaporated to provide an oil, which was chromatographed. Elution with a $4: 1$ mixture of hexane-EtOAc gave rise to $31(15.6 \mathrm{mg}, 93 \%)$ as a colorless oil. IR $\left(\mathrm{CHCl}_{3}\right): 1720$ and $3450 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.80(0.65 \mathrm{H}, \mathrm{s} ; 3 \mathrm{H}$ for $\beta-\mathrm{OH}), 1.00(2.35 \mathrm{H}, \mathrm{s} ; 3 \mathrm{H}$ for $\alpha-\mathrm{OH}), 1.17(3 \mathrm{H}, \mathrm{s}), 2.27(1 \mathrm{H}, \mathrm{d}, J=$ $12.0), 2.61(0.22 \mathrm{H}$, br d, $J=5.0 ; 1 \mathrm{H}$ for $\beta-\mathrm{OH}), 2.64(0.78 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $=5.0 ; 1 \mathrm{H}$ for $\alpha-\mathrm{OH}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.78(1 \mathrm{H}, \mathrm{t}, J=5.0), 4.75-4.79$ $(0.78 \mathrm{H}, \mathrm{m}), 4.83-4.86(0.78 \mathrm{H}, \mathrm{m})$, and $4.87-4.92(0.44 \mathrm{H}, \mathrm{m})$. HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$: 332.235. Found: 332.2347.
(\pm)-Methyl Atis-16-en-19-oate (5c). To a stirred solution of 31 $(15.0 \mathrm{mg}, 45.1 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added $1,1^{\prime}$-thiocarbonyldiimidazole $(21.6 \mathrm{mg}, 90 \%, 0.109 \mathrm{mmol})$ and DMAP $(14.0 \mathrm{mg}, 0.115$ mmol), and the resulting yellowish solution was stirred at room temperature for 12 h . After removal of the solvent, the residue was chromatographed. Elution with a $4: 1$ mixture of hexanes-EtOAc afforded the thioimidazolide $(16 \mathrm{mg})$ a colorless oil, which was pure enough for the subsequent step.

To a stirred solution of the previous thioimidazolide $(16 \mathrm{mg})$ in degassed toluene (4 mL) was slowly added a degassed toluene solution
(34) Mitscher, L. A.; Rao, G. S. R.; Veysoglu, T.; Drake, S.; Haas, T. J. Nat. Prod. 1983, 46, 745-746.
$(0.4 \mathrm{~mL})$ of $\mathrm{Bu}_{3} \mathrm{SnH}(0.02 \mathrm{~mL}, 72.1 \mu \mathrm{~mol})$ and AIBN $(1.3 \mathrm{mg}, 7.9$ $\mu \mathrm{mol}$) over a period of 3 h under reflux. After 11.5 h of refluxing, the solvent was removed, and then the residue was chromatographed. Elution with a $30: 1$ mixture of hexane-EtOAc provided 5c $(9.7 \mathrm{mg}$, 68% for two steps) as colorless prisms, mp 102.5-105.0 ${ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{CHCl}_{3}\right): 1718 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.79(3 \mathrm{H}, \mathrm{s})$, $1.18(3 \mathrm{H}, \mathrm{s}), 3.65(3 \mathrm{H}, \mathrm{s}), 4.57(1 \mathrm{H}, \mathrm{q}, J=2.0)$, and $4.73(1 \mathrm{H}, \mathrm{q}, J=$ 2.0). ${ }^{13} \mathrm{C}$ NMR (75.3 MHz, CDCl_{3}): $\delta 11.99,18.90,20.40,27.32$, $28.36,28.76,28.85,33.58,36.66,38.25,38.31,39.71,39.80,43.92$, 48.24, 51.23, 52.17, 57.22, 104.56, 152.87, and 178.04. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2}$: C, 79.70; H, 10.19. Found: C, 79.90; H, 10.14.

Synthetic (\pm)-5c was in all respects (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and IR) indistinguishable from an authentic sample of $(-)-5 \mathrm{c}$ provided by Professor T. Kato.

Acknowledgment. The authors are greatly indebted to Professor R. M. Coates, Professor M. Yoshikawa, and Professor T. Kato for generously providing samples and spectra of natural $\mathbf{5 c}, \mathbf{6 b}$, and 4c, respectively.

JA9739042

[^0]: (1) Bohlman, F.; Abraham, W.; Sherdlick, W. S. Phytochemistry 1980, 19, 869-871.
 (2) (a) Coates, R. M.; Bertram, E. F. J. Chem. Soc., Chem. Commun. 1969, 797-798. (b) Idem. J. Org. Chem. 1971, 36, 2625-2631.
 (3) Mitscher, L. A.; Rao, G. S. R.; Veysoglu, T.; Drake, S.; Hass, T. J. Nat. Prod. 1983, 46, 745-746.
 (4) Ryu, S. Y.; Ahn, J. W.; Han, Y. N.; Han, B. H.; Kim, S. H. Arch. Pharm. Res. 1996, 19, 77-78.
 (5) Daniewski, W. M.; Skibicki, P.; Bloszyk, E.; Budesinsky, M.; Holub, M. Polish J. Chem. 1993, 67, 1255-1259.
 (6) Katsumi, M.; Phinney, B. O.; Jefferies, P. R.; Henrick, C. A. Science 1964, 144, 849-850.
 (7) (a) Chen, K.; Shi, Q.; Fujioka, T.; Zhang, D.-C.; Hu, C.-Q.; Jin, J.Q.; Kilkuskie, R. E.; Lee, K.-H. J. Nat. Prod. 1992, 55, 88-92. (b) Chen, K.; Shi, Q.; Fujioka, T.; Nakano, T.; Hu, C.-Q.; Jim, J.-Q.; Kilkuskie, R. E.; Lee, K.-H. Bioorg. Med. Chem. 1995, 3, 1345-1348. Total synthesis: Corey, E. J.; Liu, K. J. Am. Chem. Soc. 1997, 119, 9929-9930.
 (8) Villalobos, N.; Martin, L.; Macias, M. J.; Mancheno, B.; Grande, M. Phytochemistry 1994, 37, 635-639.
 (9) (a) Recent synthesis: Berettoni, M.; Chiara, G. D.; Iacoangeli, T.; Surdo, P. L.; Bettolo, R. M.; di Mirabello, L. M.; Nicolini, L.; Scarpelli, R. Helv. Chim. Acta 1996, 79, 2035-2041 and references therein. (b) Our own synthetic study: Ihara, M.; Toyota, M.; Fukumoto, K.; Kamitani, T. J. Chem. Soc., Perkin Trans. 1 1986, 2151-2161 and references therein. (10) Wenkert, E. Chem. Ind. (London) 1955, 282-284.

[^1]: (11) Although a face-protonated, trachlobane-type intermediate is employed in ref 10, we prefer the bridged ions 2 and $\mathbf{3}$ that are now widely accepted, see: Coates, R. M.; Bertram, E. F. J. Org. Chem. 1971, 36, 37223729 and references therein.
 (12) Recent examples: Garcia-Granados, A.; Duenas, J.; Guerrero, A.; Martinez, A.; Parra, A. J. Nat. Prod. 1996, 59, 124-130 and references therein.
 (13) In some cases, the cyclopropylcarbinyl radical can be trapped to give the cyclopropane derivative. For example, see: Srikrishna, A.; Sharma, V. R. J. Chem. Soc., Perkin Trans. 11997, 177-181 and references therein.
 (14) For reviews, see: (a) Nonhebel, D. C. Chem. Soc. Rev. 1993, 347359. (b) Dowd, P.; Zhang, W. Chem. Rev. 1993, 93, 2091-2115.
 (15) (a) Beckwith, A. L. J.; O'Shea, D. M. Tetrahedron Lett. 1986, 38, 4525-4528. (b) Stork, G.; Mook, R., Jr. Ibid. 1986, 38, 4529-4532.
 (16) (a) Ito, Y.; Aoyama, H.; Hirao, T.; Machizuki, A.; Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494-496. (b) Kende, A. S.; Roth, B.; Sanfilippo, P. J. Ibid. 1982, 104, 1784-1785.

[^2]: (17) (a) Toyota, M.; Wada, T.; Nishikawa, Y.; Yanai, K.; Fukumoto, K. Synlett 1994, 597-598. (b) Toyota, M.; Wada, T.; Nishikawa, Y.; Yanai, K.; Fukumoto, K.; Kabuto, C. Tetrahedron 1995, 51, 6927-6940. (c) Toyota, M.; Wada, T.; Fukumoto, K. Heterocycles 1995, 41, 1135-1138.

[^3]: (18) Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.; Zheng, D. Tetrahedron Lett. 1995, 36, 2423-2426. For mechanistic studies, see: Larock, R. C.; Lee, N. H. Ibid. 1991, 42, 5911-5914 and references therein.

[^4]: (20) Horiguchi, Y.; Matsuzawa, S.; Nakamura, E.; Kuwajima, I. Tetrahedron Lett. 1986, 27, 4025-4028.
 (21) (a) Barton, D. H. R.; Ferreira, J. A.; Jaszberenyi, J. C. In Preparative Carbohydrate Chemistry; Hanessian, S., Ed.; Marcel Dekker: New York,1997; pp 15-172. (b) Lopez, R. M.; Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 6949-6950.

[^5]: (26) Mori, K.; Matsui, M. Tetrahedron Lett. 1966, 175-180; Tetrahedron 1968, 24, 3095-3111.
 (27) Pyrek, J. S. Tetrahedron 1970, 26, 5029-5032.
 (28) (a) Cory, R. M.; Naguib, Y. M. A.; Rasmussen, M. H. J. Chem. Soc., Chem. Commun. 1979, 504-506. (b) Cory, R. M.; Chan, D. M. T.; Naguib, Y. M. A.; Rastall, M. H.; Renneboog, R. M. J. Org. Chem. 1980, 45, 1852-1863 and references therein.
 (29) For a possible mechanism, we propose a sigmatropic elimination of N_{2} from a β-oriented diazene intermediate $(\mathrm{CH}-\mathrm{N}=\mathrm{NH})$.
 (30) Lewis, N. J.; MacMillan, J. J. Chem. Soc., Perkin Trans. 1 1980, 1270-1278.

[^6]: (31) Although deoxygenation of the corresponding thiobenzoate, prepared from naturally occurring 12α-acetoxykaur-16-en-19-oic acid, was performed for degradation purposes, the reported product was (-)-kaurenoic acid (mass spectral analysis), see: Beale, M. H.; Bearder, J. R.; MacMillan, J.; Matsuo, A.; Phinney, B. O. Phytochemistry 1983, 22, 875-881.
 (32) See the Experimental Section of ref 17 b .

